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Incubation of MCF-7 cells with estradiol (E,) down-regulates estrogen receptor (ER) resulting in a
progressive reduction of the capacity of cells to concentrate selectively [PH]E,. Scatchard plot
analysis failed to detect any transformation of residual receptors into peptides of lower binding
affinity. [’H]Estrone gave an identical ER disappearance pattern with an ER half-life comprised
between 2 and 3 h. A similar value was established by incubating the cells with [*H]Jtamoxifen-
aziridine (PH]TAZ) for 1 h before the addition of excessive unlabeled E, which induced ER-down
regulation and impeded any further labeling of the residual receptors. Submission of the ['H]TAZ
labeled cell extracts to SDS-PAGE revealed no progressive emergence of low molecular weight
cleavage products of the receptor (<67 kDa). Two inhibitors of protein kinases, H-7 at 40 pM and
H-89 at 20 uM, failed to block the E,-induced ER down-regulation. On the contrary, the protein
phosphatases 1 and 2A inhibitor, okadaic acid, was effective with concentrations higher than 0.1 uM
indicating that a dephosphorylation mechanism was involved in this phenomenon. Cycloheximide
(CHX) also significantly reduced the receptor decrease at concentrations higher than 1puM. G-C
specific intercalating agents [actinomycin D (AMD) and chromomycin A, at 1 gM] also prevented
ER disappearance; ethidium bromide (EB) and quinacrine were ineffective. AMD and CHX operated
immediately after their addition to the medium indicating an inhibitory action on the synthesis of
an RNA and/or a peptide with high turnover rate involved in ER decline. Moreover, AMD produced
its suppressive effects under conditions impeding any labeling of newly synthetized receptors (i.e.
[PHJTAZ with an excess of unlabeled E,) rejecting the possibility of an increasing ER production
which may partially hamper its disappearance. Finally, E,-induced ER mRNA down-regulation was
similarly abolished by AMD while EB and CHX were devoid of effect.
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INTRODUCTION ER does not function as a static modulator within
the cell, rather its concentration is substantially
modified by a number of factors including cell den-
sity [6], growth rate [7], tumor promoters [8], differen-
tiation-inducing agents [9], cytokines [10], as well as
hormones and antagonists[11]. Among the most
intensively studied negative modulators of ER levels
are the estrogens themselves. This phenomenon of
homologous down-regulation also called “processing’,
has been documented in various experimental sys-
tems [12, 13]. Its finding for other steroid hormone
receptors [14, 15] led to the concept that such a ligand-
induced down-regulation represents a feed-back mech-
*Correspondence to G. Leclercq. anism to limit the duration of hormone action on the
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The primary determinant of estrogenic effects in
eukaryotic cells is the estrogen receptor (ER), a mem-
ber of a large family of highly specialized transcription
factors including receptors for all steroid and thyroid
hormones [1, 2]. In response to estradiol (E,) binding,
ER associates strongly with enhancer-like estrogen
responsive elements (ERE) located near or within
responsive genes [3,4] as well as with other com-
ponents of the transcriptional machinery to trigger
specific genomic responses [5].
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MCF-7 mammary tumor cells have been widely
used to study the mechanism of estrogen-induced ER
down-regulation. First reports suggested its depen-
dence on transcription since actinomycin D (AMD)
and chromomycin A;, G-C specific DNA intercalators
and transcription inhibitors, were found to totally block
the phenomenon while non G-C intercalators appeared
to be non-effective [16]. Subsequent investigations
revealed a prolonged reduction of the ER mRNA
expression under E, treatment [17-19], which appeared
not to be dependent on new protein synthesis [20] nor
to an arrest of ER gene transcription in view of the fact
that ER mRNA suppression was accompanied by an
increase of its transcription after an early transient
decrease [17, 21]. In contrast to this decline in ER
mRNA expression, the loss of ER binding capacity was
shown to be blocked by cycloheximide (CHX)[13].
This effect described as yet solely in uterine cells has
also been observed for androgen [22] and thyroid
hormone [23] receptors.

In the present study conducted on MCF-7 cells,
we further explored the mechanism of ER down-
regulation, Effects of E, and estrone (E,) on the kinetics
of ER processing were analyzed in order to evaluate
the influence of the binding affinity of the ligand on
this phenomenon. Effects of various inhibitors of
transcription, protein synthesis and phosphorylation/
dephosphorylation were also investigated.

MATERIALS AND METHODS

Compounds, antibodies

[’H]E, (486 Ci/mmol), [*H]E, (482 Ci/mmol) and
[*H]tamoxifen aziridine ([*H]JTAZ) (+20 Ci/mmol)
were purchased from Amersham (U.K.). Unlabeled E,,
E,, CHX, ethidium bromide (EB) and ginacrine were
obtained from Sigma (St Louis, MO). H-7 and H-89
were purchased from Calbiochem (La Jolla, CA),
AMD, chromomycin A; and okadaic acid from
Boehringer (Mannheim, Germany). H-222 rat anti-ER
monoclonal antibody was provided by Dr C. Nolan
(Abbott Lab., North Chicago, IL); anti-rat IgG
agarose was purchased from Sigma.

Probes

The 1300 bp EcoRI fragment of pOR3 (ATCC) was
used as ERmRNA probe. The 36B4 specific probe was
the 700bp Pst] fragment of the 36B4 cDNA [24].
These fragments were introduced respectively in the
pGEM3Z (Promega; Madison, WI) and pSPT18
(Pharmacia; Uppsala, Sweden) plasmids for the syn-
thesis of anti-sense riboprobes with the Promega
SP6/T7 transcription kit, using [¢*P]JCTP (NEN-
Dupont; Boston, MA).

Culture materials

Earle’s based minimal essential medium (MEM)
with and without phenol red, fetal calf serum (FCS),
L-glutamine, penicillin, streptomycin and gentamycin

M. Borras er al.

were purchased from Gibco (Gent, Belgium). T-75,
T-175 flasks and 6-well dishes were from Falcon
(Becton Dickinson, Gent).

Culture conditions

MCF-7 cells were obtained in 1977 from the
Michigan Cancer Foundation, Detroit. Since their
introduction in our laboratory they were maintained at
37°C as monolayer cultures in closed plastic flasks
containing MEM with phenol red supplemented with
10%, heat inactivated FCS (56°C, 1h), L-glutamine,
penicillin, streptomycin and gentamycin at the usual
concentrations.

ER whole cell assay: E ~induced ER processing

MCF-7 cells maintained in monolayer culture were
removed by trypsinization. Detached cells were then
suspended in MEM containing 109%, DCC-treated
FCS [25] and plated in 6-well dishes (4+1.5 x 10° cells
in 2 ml per well). After 4 days of culture at 37°C in a
humidified 959%, air 5%, CO, atmosphere, media were
removed and cells washed gently with phosphate saline
buffer (PBS).

To quantify the extent of E,-induced ER processing,
receptor concentrations were measured in the mono-
layer by whole cell assay[26] using phenol red-
free MEM. Briefly, MCF-7 cells were incubated for
different times (45 min—18h) at 37°C with 1ml of
serum-free medium containing [PH]E, at concen-
trations ranging from 0.2 to 2nM. Additional dishes
were filled with the same concentrations of [*H]E,
and a 500-fold excess of unlabeled E, for non-
specific binding measurement. After incubation, the
medium was removed and the monolayer washed three
times with ice-cold saline solution. Bound labeled
and unlabeled E, were extracted from the monolayer
by a final incubation of 20min in 1ml ethanol at
room temperature and aliquots of 200 ul of such
ethanolic extracts were transferred to scintillation vials
containing 3.8 ml scintillator Ecoscint H (National
diagnostic, Atlanta, GE) for radioactivity counting.
All measurements were performed in triplicate.
Specific [*H]E, incorporation into the cells was
calculated from the difference in incorporated radioac-
tivity after incubation in the absence or presence of
an excess of unlabeled E, and the data were
analyzed according to Scatchard [27]. In each exper-
iment an additional 6-well dish was run in parallel
for DNA measurement by the diphenylamine method
[28]. Data were expressed in fmol (10~ " mol/ug
DNA.

In some experiments a ‘“‘two points’’ assay based on
the incubation of the cells with only one concentration
(1 nM) of [*H]E, or [*H]E, in the absence or presence
of a 500-fold excess of the corresponding unlabeled
hormone was employed. Data were expressed in per-
centage of optimal labeling, considered as the value of
*H-labeled hormone specifically incorporated into the
cells after 45 min of incubation [29].
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SDS -gel electrophoretic characterization of ER under E,
treatment: pulse—chase experiments

MCF-7 cells were plated in T-175 flasks in MEM
containing 109, DCC-treated FCS. After 4 days of
culture at 37°C in a humidified 959% air 5% CO,
atmosphere, media were removed and cells gently
washed with PBS. Cells were then incubated with
20nM [PH]TAZ for 1h in medium containing 109%,
DCC-treated FCS at 37°C; for non-specific binding
determinations, they were preincubated for 30 min at
37°C with 1 uM of unlabeled E, and maintained with
unlabeled E, during the whole [PH]JTAZ Ilabeling
period. At the end of the incubation with PH]TAZ, the
medium was decanted and the cells rinsed three times
with 10 ml of medium containing 1 uM unlabeled E, to
impede further labeling of residual ER (chase medium).
Chase medium was then added to the culture flasks for
various periods of time at 37°C (up to 18 h); zero hour
controls were not incubated with this medium after
labeling. At the end of incubation, medium was either
discarded or collected for ER assays (see below); cells
were then detached from the flask with 1 mM EDTA
in Hank’s balanced salt solution (HBSS) without Ca**
and Mg** and harvested by 10 min centrifugation
at 300g. Cell pellets were washed twice with HBSS
and extracted by freezing at —70°C in 0.5ml of a
buffered high salt solution (500 mM KCI in 10 mM
phosphate buffer, 1.5mM EDTA and 10mM thio-
glycerol pH 7.4) containing 1 uM E, to avoid any
further labeling by unremoved [PH]TAZ. After thaw-
ing, cell extracts were homogenized with this buffer in
a Teflon—glass Potter and centrifuged at 100,000g
for 1 h. Supernatants were then submitted to a DCC
treatment to remove unbound ligands, dimethyl-
formamide was added to give a 7%, final concentration
and incubated with H-222 anti-ER (1 ul/ml) for 2h
at 04°C. Immune complexes were then adsorbed
overnight on anti-rat IgG agarose, centrifuged and
resolubilized in a 200 ul lysis buffer [49 sodium
dodecyl sulfate (SDS), 209, glycerol, 10%, mercapto-
ethanol, 0.059%, bromophenol blue in 500 mM
Tris—HCI, pH 6.8] and their radioactivity measured by
liquid scintillation in a 20 ul aliquot. For ER poly-
morphism analysis, 35 ul of the solubilized material
was analyzed by electrophoresis in a 119, polyacryl-
amide gel containing 0.1%, SDS, 25mM Tris-HCI,
192 mM glycine, pH 9.2 (SDS-PAGE) [30]. Gels were
stained with Coomassie brilliant blue, destained and
dried after treatment with EN*HANCE (NEN-Du-
pont) and finally submitted to fluorography to reveal
[PH]TAZ labeled ER bands. Bands were visualized on
Kodak X-O Mat film after 2 weeks exposure at —80°C.
Molecular weight (M,) of corresponding ER forms
was estimated on a computer-assisted gel scanning
densitometer (Hoefer G.S. 300) with protein markers
from Pharmacia (M, 14-94 kDa).

ER contents of [PH]TAZ labeled cell extracts and
media were measured by Abbott enzyme immunoassay
(EIA) according to the manufacturer’s instructions.
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Before assay, media were treated with DCC to remove
unlabeled hormones and concentrated by means
of centriprep-10 concentrator (Amicon; Beverly,
MA). Such concentrated media were also submitted
to immunoprecipitation with H222, SDS-PAGE and
fluorography as described above.

Quantification of ER mRNA expression

MCF-7 cells were plated in T-175 flasks in phenol
red-free MEM containing 10% DCC-treated FCS.
After 4 days of culture at 37°C in a humidified 959, air
5% CO, atmosphere, media were removed and cells
washed twice with PBS. Cells were then incubated for
various periods of time at 37°C in a serum-free medium
in presence of a given compound aimed to block ER
down-regulation (i.e. AMD or CHX). After removal of
the medium, cells were rinsed twice with PBS, scraped
with a rubber policeman and harvested with 10 ml PBS
in a 15 ml conical tube. Cells were finally pelleted at
300g for 10 min and immediately frozen at — 180°C
until mRNA extraction.

Total RNAs were extracted by RNAzol according to
the instructions of the manufacturer (Cina/Biotecx;
Houston, TX). The RNAs, dissolved in RNase
free water were quantified by spectrophotometry
at 260-280nm and their concentration as well as
quality checked by electrophoresis through a 19,
formaldehyde-agarose gel. Aliquots of 20 pug were
precipitated with absolute ethanol and kept at
—80°C.

Total RNA and 5 ul of the Gibco-BRL 9-0.24 kb
molecular size markers were submitted to electro-
phoresis through a 19, agarose formaldehyde gel [31]
and transferred with 10 x SCC to GeneScreen Plus
membrane (NEN-Dupont) for 2h with a Vacugene
2016 aparatus (LLKB-Pharmacia). The membranes
were treated according to the manufacturer’s instruc-
tions. The blots were hybridized simultaneously
with 7.5 x 10°cpm of the riboprobes according to
the conditions described by Melton et al. [32],
except that 19, SDS was included in the prehybridiza-
tion and hybridization buffers. Hybridizations were
carried out at 55°C in a hybridization oven. The blots
were washed five times in 0.1%, x SCC, 0.1%9, SDS
at 65°C and autoradiographed with regular intensify-
ing screens at —70°C. The 36B4 specific probe was
used to correct for the differences in the actual amounts
of RNA loaded on the gel. The autoradiographic
signals were quantified by Ultrogen Scan (LKB-
Pharmacia).

RESULTS

Effects of E, on turnover rate, molecular weight and
disappearance of ER

MCF-7 cells were incubated at 37°C with [*H]E,
at concentrations ranging from 0.2 to 2nM for
various times (45min-18h) and their ER content
determined by whole cell assay. Data analyzed accord-
ing to Scatchard revealed a time-dependent decrease



328

M. Borras et al.

BF
3,0 - o 38
4 c
-5
2,5 4 8
T >
2,0 - E
1 =
1,5 - g
&
0. W
1,0 4
) F:
0,5 ga
4 wad
0,0 T ] 3,0 T T T T T 1
0 5 10 15 20 0 1 2 3 4 5
fmoles/ug DNA Time hours

Fig. 1. E,-induced processing. MCF-7 cells were incubated for various times with increasing concentrations

of [*H]E, in the presence or absence of an excess of unlabeled E,. ER levels were subsequently measured by

whole cell assay. The figure on the left referring to a Scatchard plot analysis of the binding data shows a

time-dependent loss of ER binding capacity without any significant loss of binding affinity of the unprocessed

receptors (K, range = 0.41-0.87 x 10~ '* M). Kinetic analysis of the data (right) reveals an ER half-life of about
3 h independently of the [°’H]E, concentration used.

of PH]E, binding capacity without any significant
change of the dissociation constant of the binding
reaction (almost parallel straight lines, K, range =
0.41-0.87 x 107 M) indicating that ER processing
occurred without any modification of binding affinity
for E, of the residual (unprocessed) receptors (Fig. 1
left panel). Kinetic analysis of the data (Fig. 1, right
panel) gave an ER half-life of about 3h whatever
the [PH]E, concentration used. Experiments carried
out with only one saturating concentration of [*H]E,
(1 nM) confirmed the maintenance of approx. 509, of

the maximal original binding capacity after 3h of
incubation and revealed a new steady state of ER
corresponding to 259, of the maximal binding capacity
after 6 h of incubation (Fig. 2). A similar time-course
of ER processing was obtained when [*H]E, was used
as ligand instead of [*H]E,, except that the new steady
state still reached =459, of the maximal binding
(Fig. 2) because of the lower processing capacity of this
ligand.

Interestingly, a same kinetic of ER disppearance was
observed when [*H]E, was removed from the medium
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Fig. 2. Kinetics of estrogen-induced ER processing. MCF-7 cells were incubated for indicated times with 1 nM

of either [PH]E, or [PH]E, in the presence or absence of an excess of the corresponding unlabeled hormone.

ER levels were subsequently measured by whole cell assay with both ligands. The figures expressed as the

mean + SEM of several experiments revealed a 509, decrease of specific ['H]E, or [’H]E, binding capacity after

about 3 h incubation. ER levels after prolonged incubation (new steady state) were lower with [*H]E, than

[PH]E,. Removal of the hormone after the first hour of incubation did not alter the kinetics of ER processing
(inset).
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Fig. 3. Electrophoretic properties of ER covalently labeled with ['H]JTAZ. MCF-7 cells were labeled with
[PH]TAZ for 1h and subsequently exposed to 1 uM unlabeled E, (up to 4 h). After extraction with 0.5 M KCI,
ER contents were selectively immunoabsorbed with H222 anti-ER monoclonal antibody. Radioactivity of a
part of the extracts were measured to evaluate ER half-life (data expressed as percent of control value); kinetic
analysis of the data gave a value of about 3 h (left panel). The other part of extracts were submitted to
SDS-PAGE to investigate the influence of processing on ER polymorphism (right panel). Control PH]JTAZ
labeled cells revealed the presence of native ER (67 kDa) associated with a few degradation products of lower
molecular weight; by 2h of E, treatment there was a significant reduction in the amounts of all ER forms
without any change in ER polymorphism.

after the first hour of incubation (period for optimal
labeling) and the cells gently washed. Under such
conditions all [PH]E, extracted from the cells corre-
sponded to specifically bound steroid since non-specific
binding was practically negligible. Hence, ER process-
ing appears to be the consequence of its activation and
once accomplished, presence of the hormone is no
longer necessary (Fig. 2, inset).

Cells labeled with [P’H]TAZ for 1 h and subsequently
exposed to 1 uM E, gave a similar ER half-life of &3 h
after E, addition (Fig. 3, left panel). Hence, PH]TAZ
labeling of the cells did not impede the E,-induced
processing as confirmed by assessing ER disappearance
by enzyme immunoassay (Fig. 4). Of note, ER dis-
appearance was not observed when E, was not added
to the medium indicating that [*H]TAZ was unable to
induce ER processing at the concentration used for the
labeling of the receptor (Fig. 4). Analysis of extracts
from such [PH]TAZ labeled cells by SDS-PAGE
revealed the presence of native ER (67 kDa) associated
with a few degradation products of lower molecular
weight. After 2 h of E, treatment, there was a noticeable
disappearance of all ER forms without any significant
relative increase in the amounts of the degradation
products (Fig. 3, right panel). Computer assisted
analysis of the ER band patterns confirmed this state-
ment indicating that processing did not modify the
receptor molecular polymorphism. This paradoxal
absence of increase of cleavage products, already
reported in uterine cells [13], raised the question of the
location of processed receptors. In view of the fact that
E, treatment increases the secretory activity of MCF-7
cells [33, 34], we explored the possibility of extra-
cellular release of ER. On media from cells submitted

to E, treatment (1 nM) or pulse—chase experiments of
[*H]TAZ labeled cells we failed to detect any ER
by both EIA and SDS-PAGE/fluorography (data not
shown).

Effect of AMD on E -induced processing

AMD is known to reduce the E,-induced decrease
of [PH]E, binding capacity in MCF-7 cells [16, 35].
Confirming this observation, we found that the time-
dependent loss in binding capacity produced by 1 nM
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Fig. 4. E,-induced ER processing on cells pretreated with
[PH]JTAZ. MCF-7 cells were incubated for 1h with 20 nM
[P(H]TAZ, medium was then discarded and replaced by fresh
medium with either 20 nM [°’H]JTAZ or 1M E, for various
times. Harvested cells were homogenized and their ER con-
tent determined by using Abbott ER EIA. Results, presented
as percentage of control value (100%,), reveal that ER down-
regulation was only observed after E, addition.
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Fig. 5. Effect of AMD on E,-induced ER processing.
MCF-7 cell cultures to which 1gM AMD was or was not
added were incubated for indicated times with 1nM of
[PH]E, in the presence or absence of an excess of unlabeled
E,. ER levels measured by whole cell assay revealed that
AMD totally blocked ER disappearance producing a slight
increase in [*H]E, binding capacity (upper panel). Scatchard
plot analysis of representative binding data (2 h incubation)
shows that the drug operated without modification of
the binding affinity of the receptor for the hormone (K,
value x 101 M: Control 45 min=1.46; Control 2h=1.69;
1 M AMD 2 h =1.34) (middle panel). Kinetic analysis of the
data gave straight line patterns with a slight positive slope
(lower panel) (compare to Fig. 1, right panel).
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[*H]E, was totally abrogated by 1 uM AMD (Fig. 5,
upper panel). In fact, Scatchard plot analysis of the
data revealed a slight increase of binding capacity
depending on both incubation time and AMD concen-
tration (Fig. 5, middle panel and Fig. 6). Kinetic
analysis of these data gave almost parallel straight lines
with a slightly positive slope (Fig. 5, lower panel vs
Fig. 1, right panel); identical patterns were obtained
when AMD was added to cells 1 h before or after their
labeling with [°*H]E, (data not shown). Values found at
the time of optimal binding were not modified by the
presence of the intercalating agent indicating that it
does not block or delay the binding of the hormone to
receptor.

In order to investigate whether the antagonistic
property of AMD may be generalized to other interca-
lating agents, cells were treated for 1 or 3 h with 1 nM
[’H]E, in the presence of either AMD, chromomycin
A;, quinacrine or EB at 0.1 and 1 M. Only chro-
momycin A; and AMD which intercalate at G-C base
pairs on DNA were effective, AMD being the most
powerful agent (Fig. 6).

Remarkably, AMD blocked the E,-induced ER
down-regulation under conditions impeding any
labeling of newly synthetized receptors (i.e. PH]TAZ
with an excess of unlabeled E,; pulse—chase exper-
iments) rejecting the possibility of an increase of ER
production in its presence which would have partially
hampered its disappearance. On the contrary, EB
failed to block the E,-induced ER down-regulation
confirming the specificity of the AMD effect (% of
maximum [*H]TAZ binding after 3 h E, treatment: no
drug = 54%,; 1 yM AMD =989%; 1 uM EB = 519%,).

Effect of CHX on E rinduced ER processing

Incubation of MCF-7 cells with 1 nM [*H]E, in the
presence of CHX revealed that this inhibitor of protein
synthesis partially blocked ER processing (Fig. 7, left
panel) in a concentration-dependent manner (Fig. 7,
right panel). This effect occurred without any signifi-
cant variation of the binding affinity of the residual ER
as revealed by Scatchard plot analysis (K, values after
3 h of E, treatment: Control = 1.19 x 10~ ' M; CHX
50 uM = 1.28 x 10~ '° M). Blockade of ER processing
also occurred when CHX was added to cells after 1 h
of incubation with [*H]E, (optimal labeling time) or
when the processing had already started (90 min after
addition of [PH]E,). CHX at the highest concentration
used (75 uM) did not significantly modify the maximal
[*H]E, binding capacity indicating that it did not
impede or delay hormone binding to the receptor.
Interestingly, CHX failed to block ER processing when
it was added before [*H]E, labeling (2 h of incubation
followed by its removal at the time of labeling) (Fig. 7,
left panel); the sole detectable effect found under such
conditions was a reduction of optimal binding capacity
(~359,) probably due to an inhibition of ER synthesis.
This hypothesis was supported by the fact that the
residual receptor levels (steady-state) measured in
the absence of CHX corresponded to the extent of
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Fig. 6. Effect of different DNA intercalators on E,-induced ER processing. MCF-7 cell cultures to which a given

DNA intercalator was added at 0.1 or 1 uM were incubated for various times with 1 nM of [*H]E, in the presence

or absence of an excess of unlabeled E,. ER levels measured by whole cell assay revealed that drugs

intercalating at G-C base pairs on DNA solely impeded ER disappearance, AMD being the most powerful
compound.

ER decline found when the drug was added at the time
of [*H]E, labeling.

Effect of protein kinases and phosphatases inhibitors on
E ~induced ER processing

In order to determine if a phosphorylation process is
involved in E,-induced ER processing, MCF-7" cells

were incubated for 1 or 4 h with 1 nM [’H]E, in the
presence or absence of two serine/threonine protein
kinases inhibitors. As shown in Fig. 8 (upper panel)
H-7 at 40 uM and H-89 at 20 uM failed to affect
the E,-induced ER disappearance; a 2 h preincubation
before [*H]E, labeling was also ineffective (data not
shown). Of note, while H-7 did not affect maximal
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Fig. 7. Effect of CHX on E,-induced ER processing. MCF-7 cells were incubated for indicated times with 1 nM

of [PHIE, in the presence or absence of an excess of unlabeled E,. At various times, 50 uM CHX was added to

the medium (2 h treatment prior [*H]E, labeling: ¢ = 120; at [’H]E, labeling: ¢t = 0; 45 min after [°’H]E, labeling:

t =45; 90 min after [*H]E, labeling: ¢ = 90). ER levels measured by whole cell assay revealed that CHX added

at time of or after labeling partially blocked ER disappearance while pretreatment with the drug and posterior

removal produced only a reduction of optimal binding capacity (left panel). Cells incubated as above for 1
or 4h with various concentrations of CHX showed a concentration-dependent effect (right panel).
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cultures to which either H-89 (selective PKA inhibitor) at 20 uM or H-7 (broad range PK inhibitor) at 40 uM

was added were incubated for 1 or 4 h with 1 nM of [*H]E, in the presence or absence of an excess of unlabeled

E,. ER levels measured by whole cell assay revealed that H-89 and H-7 both failed to affect ER disappearance

though the former produced a slight inhibition of [*H]E, optimal binding capacity (upper panel). Okadaic acid

assessed in two different experiments partially blocked the ER disappearance in a concentration-dependent
manner without significantly affecting the optimal binding capacity (lower panel).

binding capacity of the cells, H-89 always produced a
slight reduction (~20%,) suggesting a participation of
PKA [36] in the ability of newly synthetized receptors
to bind E,. On the contrary, okadaic acid, a specific
inhibitor of phosphatases 1 and 2A, partially blocked
ER processing in a concentration-dependent manner
(concentrations higher than 0.1 #M) without signifi-
cantly affecting the maximal [*H]E, binding capacity
of the cells (Fig. 8, lower panel). A dephosphorylation
process of ER or of a protein regulating its turnover
seems, therefore, involved in the progressive disap-
pearance of the receptor.

Estrogen regulation of ER mRNA

The effect of 1 nM E, on the levels of ER mRNA in
MCEF-7 cells was investigated. A significant decrease
of ER mRNA was rapidly observed reaching 509, of
the control value after 4 h of incubation; after 18 h
levels were reduced to approx. 309, of the control

(Fig. 9, upper and lower panels). This E,-induced
suppression of ER mRNA was blocked by 1 tM AMD
(Fig. 9, lower left panel); the decline on ER mRNA
detected after 4 h in the sole presence of this agent was
only 259 indicating that E, accelerated by 2-fold ER
mRNA degradation. EB at 1 uM was ineffective in this
regard confirming the specificity of action of AMD
(Fig. 9, lower right panel). In contrast, CHX at 50 uM
did not abolish the negative effect of E, on ER mRNA
levels (CHX alone had no significant effect) (Fig. 9,
lower right panel).

DISCUSSION

In monolayer culture of MCF-7 cells by using two
methods of ER measurement namely [*H]E, whole cell
assay (a ligand exchange assay) and [PH]TAZ covalent
labeling before E, addition, we confirmed [16, 37] a ER
half-life of approx. 3h under E, stimulation. After
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Fig. 9. E;-induced ER mRNA down-regulation. MCF-7 cells were incubated in serum-free medium with 1 nM
E, in the presence or absence of a given compound aimed to block ER mRNA down-regulation (i.e. AMD, EB
and CHX). At indicated times cells were harvested and total RNA extracted with RNAzol. 20 ug of total cellular
RNA were submitted to eletrophoresis and Northern blotting and hybridized simultaneously with
7.5 x 10° cpm of ER and 36B4 riboprobes. The blotts were autoradiographed with regular intensifying screens
at —70°C for 3 days and the signals quantified by Ultrogel Scan. An autoradiograph representative of various
experiments is shown (upper panel). The values were expressed as the ratio of the integrated ER signals
divided by the 36B4 integrated signals. Data representing the average of two different experiments + SEM are
expressed as percent of the controls. 1 nM E, produced a time-dependent decrease in ER mRNA expression
reaching 509 of the control value after ~4h incubation. This effect was blocked by 1 uM AMD (upper and
lower left panel). EB at 1 uM and CHX at 50 M were ineffective in this regard (upper and lower right panel).

6 h of hormone treatment a new ER steady state was
reached corresponding to about 309, of the level
found after the first hour (original maximum level). In
addition, labeling of cells with [’H]E, revealed no major
influence of the binding affinity of the ligand on the
kinetic of ER processing. During this period of ER
disappearance we failed to detect any transformation of
the residual receptors into peptides of lower binding
affinity or a modification of ER molecular poly-
morphism as demonstrated by [)H]JTAZ labeling of the
cells. Within the medium from E, stimulated cells we
also failed to detect any ER cleavage product in a form
that could be detected by [PH]TAZ labeling and EIA.
Therefore, the question of the location of the processed
ER remains unsolved.

The E,-induced ER loss analyzed here by ER
whole cell assay, which bypass eventual difficulty of
receptor extraction and further labeling, corresponds to
a decrease of the receptor protein as previously shown

by us and others [38, 39]. Interestingly, withdrawal of
[®H]E, after the first hour of incubation gave the same
time-course of ER processing pattern indicating that
this phenomenon probably results from activation
of the receptor and/or subsequent binding to DNA,
once the latter(s) is accomplished, the presence of the
activating ligand for ER down-regulation is no longer
required.

Whatever the mechanism for the E,-induced ER
down-regulation could be, it is clear that it is fully
prevented by AMD and chromomycin A;, both of
which recognize G-C base pairs on DNA. Binding
characteristics of ER were unaffected throughout the
treatment with AMD. In fact, a slight increase in
*H]E, binding capacity occurred in the presence of this
drug indicating that ER mRNA could still be translated
into new peptides; this increase, of course, was not
detected under conditions impeding any labeling of
newly synthetized receptors (i.e. [PH]JTAZ labeling
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with an excess of unlabeled E,). The effect of AMD
was very rapid suggesting an inhibitory action on the
synthesis of an RNA and/or an enzyme implicated
in ER mRNA and peptide degradation. In this
regard, it could be stressed that ER mRNA down-
regulation occurring under 12-O-tetradecanoyl-
phorbol-13-acetate (TPA) treatment is also abrogated
by AMD; although the underlying mechanism is not
established, the participation of a short lived RNA
molecule with catalyic activity has been proposed [40].
Another proposed hypothesis is the trapping of the
receptor within the chromatin matrix which would
block its release from the nucleus as a receptor—-RNA
complex, a process postulated to be required for further
RNA and subsequent protein synthesis [41].

Assessment of ER mRNA levels under E, treatment
revealed a time-dependent decrease similar to the
reduction of [*H]E, binding capacity. Whether this
phenomenon is of transcriptional or posttranscriptional
nature is an unsolved question. In this regard, it has
recently been shown that ER could bind to a portion
of its cDNA suggesting a mechanism of autologous
ER down-regulation [42]. On the other hand, in the
MCF-7 model investigated here, E, was reported to
cause an early transient drop of the transcription rate
of ER mRNA; this rate subsequently rises to its
original level even though ER mRNA and protein
synthesis remain repressed indicating that post-
transcriptional regulation is at least implicated in ER
down-regulation [17, 21]. The additional observation
that steroid hormones regulate the stability of some
mRNAs introduced the concept of interrelationship
between ER and RNA [43-45]. The fact that treatment
of cytosolic ER with ribonuclease induces its inter-
action with DNA cellulose and matrices adsorbing
activated receptors ([46] and unpublished data from
our laboratory) support such an hypothesis of a func-
tional role of ER-RNA associations.

In agreement with a preliminary report [20], we
failed to show any effect of CHX on the E,-induced
ER mRNA decrease suggesting that the latter is inde-
pendent of protein synthesis. In contrast, our results
show that CHX arrests the ER peptide disappearance
immediately after its addition. Treatment of the cells
with CHX before [PH]E, labeling did not alter the
kinetics of ER processing suggesting the induction by
the hormone of a rapidly turning over enzyme involved
in ER degradation. This blockade of E,-induced
ER processing by CHX was accompanied by a slight
decrease in the binding capacity of the cells probably
due to an inhibition of newly synthetized receptors
from a preexisting ER mRNA pool, as shown by a 2h
pretreatment before [PH]E, labeling. Under such con-
ditions a 35%, inhibition of the original [’H]E, binding
capacity was observed in agreement with a more
prolonged ER half-life (&5 h) already reported in the
absence of estrogenic stimulation [37].

Our preliminary investigation with okadaic acid, a
specific protein phosphatases 1 and 2A inhibitor [47],
suggest the involvement in the E,-induced ER process-
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ing of a dephosphorylation of the activated ER and/or
a protein regulating its turnover. On the other hand,
our results did not detect any implication of PKC as
well as PKA on this phenomenon which contrasts with
the TPA-induced ER down-regulation that has been
claimed to be mediated by PKC [48]. In this regard, it
should be stressed that a cross-talk between ER and
Ca™* *-dependent signal pathways through trans-
membrane signaling has been reported [49]. This inter-
relationship may represent an important modulatory
mechanism of ER turnover since an increase in
intracellular Ca** causes a time-dependent down-
regulation of ER mRNA and ER levels similar to that
found with E,[50]. Supporting this concept is the
recent observation that E, produces a rapid increase of
intracellular Ca** by activating PLCa [51-53] which
displays high homology with a segment in the estrogen
binding domain of ER [54, 55]. PL.C« yields second
messengers inositol triphosphate, diacylglycerol and
arachidonic acid [56,57] known to modulate the
binding capacity of steroid receptors [58, 59].

In conclusion, estrogen-induced decrease of ER con-
centration is a complex mechanism depending on the
production of an RNA and/or a degradative enzyme
with high turnover rate. At least two mechanisms
appear to be implicated in this phenomenon: first, a
transcriptional and/or posttranscriptional ER mRNA
regulation which could alter its synthesis and stability;
second, a phosphorylation/dephosphorylation process
of hormone-bound receptors [and/or related protein(s)]
associated with an accelerated disappearance of ER.
Variation in the intracellular Ca* * level could be
involved in these regulatory mechanisms.
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